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ABSTRACT

In human–agent interactions, it is necessary for the systems to iden-

tify the current emotional state of the user to adapt their dialogue

strategies. Nevertheless, this task is challenging because the current

emotional states are not always expressed in a natural setting and

change dynamically. Recent accumulated evidence has indicated

the usefulness of physiological modalities to realize emotion recog-

nition. However, the contribution of the time series physiological

signals in human–agent interaction during a dialogue has not been

extensively investigated. This paper presents a machine learning

model based on physiological signals to estimate a user’s sentiment

at every exchange during a dialogue. Using a wearable sensing de-

vice, the time series physiological data including the electrodermal

activity (EDA) and heart rate in addition to acoustic and visual

information during a dialogue were collected. The sentiment labels

were annotated by the participants themselves and by external hu-

man coders for each exchange consisting of a pair of system and

participant utterances. The experimental results showed that a mul-

timodal deep neural network (DNN) model combined with the EDA

and visual features achieved an accuracy of 63.2%. In general, this

task is challenging, as indicated by the accuracy of 63.0% attained

by the external coders. The analysis of the sentiment estimation

results for each individual indicated that the human coders often

wrongly estimated the negative sentiment labels, and in this case,

the performance of the DNN model was higher than that of the

human coders. These results indicate that physiological signals can

help in detecting the implicit aspects of negative sentiments, which

are acoustically/visually indistinguishable.

CCS CONCEPTS

•Computingmethodologies→Discourse, dialogue andprag-

matics; Physiological model.

KEYWORDS

Physiological Signal Processing; Social Signal Processing; Multi-

modal Interaction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICMI ’20, October 25–29, 2020, Virtual event, Netherlands

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7581-8/20/10. . . $15.00
https://doi.org/10.1145/3382507.3418844

ACM Reference Format:

Shun Katada, Shogo Okada, Yuki Hirano and Kazunori Komatani. 2020. Is

She Truly Enjoying the Conversation?: Analysis of Physiological Signals

toward Adaptive Dialogue Systems. In Proceedings of the 2020 International

Conference on Multimodal Interaction (ICMI ’20), October 25–29, 2020, Virtual

event, Netherlands. ACM, New York, NY, USA, 9 pages. https://doi.org/10.

1145/3382507.3418844

1 INTRODUCTION

Multimodal behavioral processing technology is a key technique

for developing an empathetic dialogue system that can adapt to the

behavior of a human user. Although many studies pertaining to

human–agent or human–robot interaction settings have focused

on verbal information, nonverbal information is also valuable to

estimate a user’s positive or negative sentiments. In addition, as the

user’s sentiment states can change dynamically during dialogues,

it is necessary to capture the dynamic changes in real time. Explicit

behaviors that can be observed as visual information, such as fa-

cial expressions and body motion, and acoustic information, such

as speaking activity and prosody, are known to be useful in the

emotion recognition task [25]. Nevertheless, as people often refrain

from expressing their emotions during social interaction, not all

emotions are explicitly expressed as linguistic, acoustic, or visual

information. Moreover, it is challenging to recognize the changes

in the emotional states in a natural situation with no emotional

stimuli, by using only observable signals such as visual and acoustic

information. Recently, biosignals including electroencephalograms

(EEG), electrocardiograms (ECG), and electrodermal activity (EDA)

have been used to detect changes in the implicit responses and

emotional states of a user. For example, applications utilizing these

biosignals have been reported for a movie watching task [6], stress

detection [12], and the provision of personalized recommendations

[24]. However, the contribution of these biosignals in estimating a

user’s sentiment during dialogues remains unknown.

Physiological signals can be used to estimate sentiments because

these signals are closely related to the states of the autonomic

nervous system. The autonomic nervous system consists of the

sympathetic and parasympathetic nervous systems, which main-

tain the homeostasis of organisms by involuntary automatic control

of the peripheral organs in the body [15]. For example, the emo-

tions of anger and fear activate the sympathetic nervous system

and increase the heart rate (HR) and respiratory rate. In contrast,

when relaxing, the parasympathetic nervous system is the dom-

inant part and decreases the HR and respiratory rate. The EDA

is another representation of physiological changes and has been

widely used in emotion related research [22, 27]. The EDA indicates

electrical changes on the skin surface, derived from the activity of
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the eccrine sweat glands, and is considered to be an arousal indica-

tor [22]. In addition, a correlation has been reported between the

regional cerebral blood flow measured using the positron emission

tomography and the HR variability in emotion evoking stimuli [20].

This evidence appears to indicate a strong correlation between the

brain and peripheral tissues. Thus, valuable information for emo-

tion recognition can likely be obtained from such physiological

signals.

It is difficult to correctly estimate a user’s sentiments using only

the acoustic and visual information if the user does not explic-

itly express his/her emotion to the dialogue system. In this regard,

biosignals may enhance the performance of user sentiment estima-

tion by supplementing the acoustic and visual information collected

simultaneously [4, 14, 19, 29], as long as the wearable sensors do

not disturb the dialogue. In this study, we demonstrated that the

physiological information collected from participants engaged in

dialogues with the agents improved the estimation accuracy of

the participants’ sentiment labels, which were annotated by the

participants themselves for each exchange.

The main contributions of this work can be summarized as fol-

lows.

Estimating sentiment labels by using the physiological sig-

nals during dialogues: To clarify the effectiveness of the physio-

logical signals in estimating a participant’s sentiment label, we eval-

uated models based on the physiological modality in human–agent

interaction settings and compared them with those pertaining to

acoustic and visual information. In addition, we verified the effec-

tiveness of combining the physiological signals with acoustic/visual

signals on the same task. The experimental results are presented in

Section 6.

Comparison between multimodal DNN and human model:

We collected a new dialogue corpus, including two types of sen-

timent labels annotated to each exchange consisting of a system

utterance followed by a participant utterance. One is the sentiment

labels annotated by the participants themselves and the other is

those annotated by multiple human coders. The accuracy of human

coders in estimating the participant sentiments was examined to

clarify the difference in the two types of sentiment labels. More-

over, the accuracies of estimation by the human coders and models

trained with multimodal features helped compare the performances

of third party humans and computational models involving physio-

logical signals. The analysis helped demonstrate the challenging

nature of the task and the contribution of the automatic multimodal

recognition technique in estimating the participants’ sentiment

states. This analysis is described in Section 7.1.

Example showing relationships between sentiment labels and

EDA signals: We investigated the relationship between the par-

ticipants’ sentiment scores and EDA features. The results of the

correlation analysis were used to correlate the galvanic skin re-

sponse (GSR) numbers and an EDA feature with the sentiment

scores. We examined the time series sentiment scores and GSR

numbers and presented an example of the dynamic changes in

these parameters. The analyses are described in Section 7.2.

2 RELATEDWORKS

Research on the detection, modeling, and practical application of

human emotional behavior is known as affective computing [25].

In the affective computing domain, relationships between the emo-

tional and nonverbal information, such as facial expressions, speech,

gestures, and physiological states have been examined [26, 27]. In

[6, 33], multimodal data including EEG, ECG, and EDA data were

collected while the participants watched a video, and an emotion

recognition model was proposed based on these biosignals. For

emotion elicitation, these studies used videos that were classified

into one of four quadrants of the valence arousal space. Kim et

al. [13] investigated the potential of physiological signals for emo-

tion recognition by using biosensors such as electromyogram, ECG,

EDA, and respiration sensors. As emotional stimuli, they used mu-

sic that spontaneously induced real emotional states in the users.

Kalimeri et al. [12] presented a multimodal framework to detect

the stress of visually impaired people when they were placed in

unfamiliar locations. The EEG and EDA data were collected using

wearable sensing devices, and a random forest model was used

to estimate stressful environmental conditions. With advances in

biosignal sensors, many studies have focused on emotion recogni-

tion using biosignals [5, 21, 28, 30]. However, only a few studies

under nonstressful conditions or without emotional stimuli, espe-

cially in human–agent interaction settings, have been conducted.

Therefore, in this study, we investigated the effectiveness of phys-

iological signals for sentiment estimation in an interactive chat

dialogue.

To implement an adaptive dialogue system, it is important to

recognize the user’s engagement, interest, and sentiment (e.g., en-

joyment during the conversation) based on multimodal behaviors,

and many studies have focused on these factors [2, 11, 23]. In [11], a

recognition model for user engagement (interest and willingness to

continue the dialogue) in human–robot interactions was proposed

based on the user’s audio–visual information. In [35], to assess the

presence of the interest of a user in a time series, they considered

an exchange between the system and user as a unit in a chat dia-

logue. The facial expression, head movement, and prosody of the

utterances were used as the multimodal information in this study.

Tavabi et al. [34] attempted to generate natural and engaging social

interactions in human–agent dialogue systems and estimated the

empathy in an uncontrolled environment. They proposed a mul-

timodal DNN to identify opportunities in which the agent should

express empathetic responses. In the aforementioned studies, the

estimation was based on the user’s explicit information, such as the

audio/visual information, and the physiological signals were not

considered. In our study, we constructed models based on multi-

modal information, including physiological signals, which can help

detect the implicit aspects of a user’s sentiment during dialogues.

We used a multimodal dialogue corpus including the user’s in-

terest label, user’s sentiment label, and topic continuance, which

were annotated by human coders at the exchange level [10], to

implement an adaptation mechanism of the dialogue strategy in

spoken dialogue systems. These three labels were correlated and

simultaneously captured the different aspects of the internal state of

the user. Considering the relationship among the labels, we applied

a multitask learning technique to the binary classification tasks and
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Figure 1: Overview of the estimation of the user’s sentiment at the exchange level.

demonstrated that a multitask DNNmodel trained with multimodal

features outperformed a single task DNN. The dialogue corpus we

used did not include physiological data. In this study, the newly

collected dialogue corpus included not only acoustic/visual features

but also physiological features. Moreover, this corpus included the

exchange level sentiment labels annotated by both the participants

themselves and third party human coders. Thus, the corpus enabled

the investigation of the novel aspects of the physiological features

in this setting and comparison of the effectiveness corresponding

to the physiological and acoustic/visual modalities to estimate the

user’s sentiment.

Chaminade et al. [3] constructed an experimental setup that

provided temporally aligned behaviors along with physiological

activity during human–agent interactions. They focused on the

communicative behavior in social interactions and showed that

the physiological measures were correlated with various commu-

nicative behaviors; however, the user sentiment was not annotated.

Egorow et al. [8] showed that physiological signals, including elec-

tromyograms, skin conductivity, and respiration, could help detect

dialogue stages in which the user experienced trouble in interacting

with the dialogue system. However, the user’s sentiment labels were

not annotated by the users and were simply divided into two classes

based on the predetermined dialogue situation. In our study, the

sentiment score was annotated both by the participants themselves

and external coders for every exchange in a natural chat dialogue.

Therefore, models that recognize the dynamically changing senti-

ments of the user can be constructed, and adaptation strategies for

multimodal dialogue systems can be implemented.

3 DATA

We used a multimodal dialogue corpus named Hazumi1911, col-

lected from November 2019. The recording setting was almost the

same as that of Hazumi1712 [18] and Hazumi1902 [16], except

physiological sensors were newly used in Hazumi1911. 1

3.1 Data Collection

Figure 1 shows an overview of the study flow. Data were collected

in the context of a human–agent dialogue as in [18], following

which, the participants communicated with a virtual agent known

asMMDAgent2 shown on the display. The agent was operated using

the Wizard of Oz method. Specifically, a human operator (Wizard)

remotely controlled the system and interacted with participants in

another room. The participants were not informed that the agent

was remotely controlled by a human operator until the end of the

experiment. No specific task was assigned in the dialogue; i.e., the

participants simply chatted with the agent.

Basically, the operator selected the utterances of the agents from

the pre-defined utterance list by watching the participants’ states

through a camera. The operator tried to make them enjoy the

conversation and want to continue talking. Because the operator

was well trained and had time to select the next utterance while

the participant was speaking (around 10-second long), there was a

small waiting time before the agent started responding. The agent

generated random animation of subtle movements as multimodal

behavior (head and hand gestures and facial expressions), which is

a built-in component of MMDAgent.

The time series physiological signals were collected during the

dialogues using a physiological sensor, that is, the Empatica E4

wristband3. In general, if the sympathetic nervous system is acti-

vated by emotional stimuli, sweat glands are activated, increasing

the level of sweating. These changes might not be perceptible by

the user; however, the EDA sensor can detect these small changes

1Hazumi1712 and 1902 are currently publicity available [17]; Hazumi1911 will be
released similarly.
2http://www.mmdagent.jp/
3https://www.empatica.com/research/e4/
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as changes in the skin conductance (SC) by using two electrodes in

contact with the skin. Furthermore, as the E4 device is wireless and

worn like a wristwatch, it causes neither disturbance nor discomfort

during the dialogues. Thus, this device is suitable to investigate

a user’s sentiment during dialogues. The EDA and HR of the par-

ticipants were recorded at 4 and 1 Hz, respectively. In addition, a

blood volume pulse was obtained, and the HR was computed as the

output from this device. In terms of the acoustic signals, the voice

of the participant was recorded as a 16 kHz WAV file by using a

Microsoft Kinect V2 sensor. In terms of the visual signals, the facial

expressions of the participants were recorded using a video camera

at 30 frames per second (fps), and motion data were recorded using

the Kinect sensor at 30 fps.

3.2 Participants

Thirty participants (aged 20–70 y; male/female, 15/15) were re-

cruited from the general public through a recruitment agency. Data

from 26 participants were used for analysis; the data of four partici-

pants were disregarded because of missing values after preprocess-

ing. The average duration of the data was 20.5 min per participant.

The dialogue data of one participant contained 95 exchanges on

average.

3.3 Annotation

Two types of annotationswere labeled in this study: (1) self-sentiment

annotation and (2) external sentiment annotation, which were an-

notated by the participants themselves and external coders, respec-

tively. In this study, an exchange was defined as a section that began

from the start time of a system utterance and ended at the start

time of the next system utterance. Based on this definition, a total

of 2468 exchanges obtained from 26 participants were annotated.

The annotation procedures were as follows:

(1) Self-sentiment annotation: The participants themselves an-

notated the labels per exchange while watching their videos after

the experiment. The labels were assigned as scores ranging from 1

(not enjoying the dialogue) to 7 (enjoying the dialogue). The posi-

tive sentiments included “enjoy talking”, “want to continue talking”,

and “satisfied with the talk”, and the negative sentiments included

“want to stop talking” and “confused about the system utterances”.

(2) External sentiment annotation: Five human coders anno-

tated the labels per exchange as scores ranging from 1 (participants

seem to be bored with the dialogue) to 7 (participants seem to

enjoy the dialogue) while watching the recorded videos of the dia-

logues. This assessment was performed considering the acoustic,

visual, and linguistic features of the participants. The human coders

were instructed not to assign labels considering only a part of the

exchange and to assign labels considering the differences among

individual participants after watching the entire recording of the

target participant.

The agreement between the coder ratings was calculated using

Cronbach’s alpha. Generally, a Cronbach’s alpha of > 0.8 indicates
a high consistency between the annotated labels. In this study,

Cronbach’s alpha was 0.83 in the external sentiment annotation,

indicating the reliability of the annotation. A more detailed descrip-

tion of the annotation methods has been presented in [10].

Figure 2: Example of SC analysis, showing the EDA signal

(blue curve), tonic component (baseline, orange curve), and

GSR (red circles).

4 MULTIMODAL FEATURE EXTRACTION

We focused on the analysis of nonverbal data, especially the analysis

of the physiological implicit responses. To compare the effectiveness

of the nonverbal features, the physiological, acoustic, and visual

information was synchronized using the log data and preprocessed

for feature extraction. All the features were extracted from the

whole dialogue per exchange, similar to the annotation procedure

described in Section 3.3. In this section, we describe the nonverbal

features extracted from each modality.

4.1 Physiological Features

The EDA and HR were recorded using the E4 wristband placed on

the participants’ wrist. The EDA, measured as the SC, reflects the

sweat gland activity through the sympathetic nervous system and

is widely used to detect the changes in the emotional states at the

arousal level [22]. The SC in the time series was decomposed into

the SC level (tonic component) and SC response (also known as

the GSR). Therefore, the SC level was calculated using polynomial

fitting (degree of 10), and the GSR was detected using PeakUtils4

(amplitude threshold of 0.3). Subsequently, the GSR number per

exchange was extracted as an EDA feature (Figure 2). Moreover,

we calculated the following statistics for the EDA and HR in each

exchange and used them as physiological features: mean, stan-

dard deviation, skewness, kurtosis, maximum and minimum values,

mean of the first and second differences, range (difference between

maximum and minimum values), slope and intercept of the linear

approximation, and 25th and 75th percentile values. Overall, 27

features (14 and 13 features from the EDA and HR, respectively)

were extracted as the physiological features from each exchange.

The data were normalized using the min-max normalization into a

range of zero to one.

4.2 Acoustic and Visual Features

Acoustic signals from the participant utterances were used to ex-

tract features. The INTERSPEECH 2009 Emotion Challenge feature

set (IS09) [31] was extracted using the OpenSMILE5 software. The

4https://pypi.org/project/PeakUtils/
5https://www.audeering.com/opensmile/
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features were calculated as statistics, and 384 acoustic features were

extracted in total from each exchange.

The facial expressions andmotion activity in each exchange were

extracted as the visual features. Using the OpenFace library[1], the

facial landmarks around the eye, mouth, and eyebrow were deter-

mined, and the velocity and acceleration were calculated at each

point for the facial feature extraction. The estimated categories of

the facial action units described in [9] were used as the facial fea-

tures. The motion data of the hands, shoulders and head, recorded

by the Microsoft Kinect sensor were employed, and the calculated

velocity and acceleration were used as the motion features. Overall,

87 features were extracted from the facial expressions and motion

activity as the visual features. The data were normalized for each

participant through the Z score normalization, that is, considering

a mean and standard deviation of zero and one, respectively, for all

samples pertaining to each participant.

5 EXPERIMENT

The aim of this study was to verify whether physiological features

can help estimate a participant’s sentiment labels. To this end, we

performed binary classification tasks on the sentiment labels by us-

ing machine learning models and an external sentiment annotation

score (which can be regarded as a “human” model). In the binary

classification tasks, the sentiment labels were divided into high and

low classes considering a threshold of 4 (neutral state). The number

of high/low classes of the sentiment labels was 1119/1349. Similarly,

the external sentiment annotation score was processed and divided

into high and low classes, and the number of the high/low classes of

the external sentiment annotation was 1701/767. In the correlation

analysis, the sentiment scores in the range of 1 to 7 were used to

calculate the correlation coefficient.

5.1 Machine learning models

5.1.1 Linear Support Vector Machine (SVM). In the binary classifi-

cation task, linear SVM models [7] based on physiological, acoustic,

visual and multimodal features were constructed to compare the es-

timation accuracy. The SVMmodels were optimized using a fivefold

cross-validation scheme for the training data set with the penalty

parameters set as {0.001, 0.01, 0.1, 1, 10}. The penalty parameter en-

sures a balance between the loss function and margin maximization.

We used the SVM in two ways to fuse the different modalities: early

fusion (EF) and late fusion (LF). In EF, the feature vectors from

different modalities were concatenated into one feature vector. In

the LF, the results of the trained unimodal output were combined to

provide a final estimation. In the SVM model, the final estimation

was based on the decision function of the unimodal models.

5.1.2 Deep Neural Network (DNN). We used DNN models to verify

whether the models improved the performance in the binary classi-

fication task. To this end, we used DNNs in two ways to fuse the

different modalities, similar to the aforementioned SVM modeling.

To train the unimodal feature set using the EF, the DNN was

composed of an input layer, two middle layers with 64 units, two

middle layers with 32 units, and an output layer. When using the

EF to train the multimodal (bimodal and trimodal) features, the

same architecture as that in the unimodal configuration was used,

including two middle layers with 128 units for the bimodal features

and a layer with 192 units for the trimodal features.

When using the LF to train the multimodal feature set, two lay-

ered DNNs were composed. For the lower layer, a neural network

with an input layer and two middle layers with 64 units was pre-

pared to extract the unimodal features. For the higher layer, the

output units of the unimodal models were concatenated, and the

layer with the concatenated units was connected to two hidden

layers with 32 units. The concatenated layer had a high dimensional

output, and thus, a dropout was implemented after the layer.

In all the DNNmodels, we set the batch size as 32, total number of

epochs as 30, and dropout rate as 0.3. We used the Adam optimizer

and set the learning rate as 0.001. For the DNNs, we trained and

tested the models three times through random initialization and

reported the average accuracy.

5.2 Evaluation procedure

To evaluate the models, the cross-validation method (leave one per-

son out cross-validation, LOPOCV) was performed in the SVM and

DNN models. In the LOPOCV, the samples corresponding to each

exchange between the participant and dialogue systemwere used as

the test data, and the remaining samples were used as the training

data. This procedure ensured that the test data from one participant

were completely excluded in the training dataset, thereby avoiding

overestimation. We compared the average accuracy of the test data

set among the models based on each modality. The majority base-

line for the binary classification of the self-sentiment annotation

was 54.7%.

6 EXPERIMENTAL RESULT

Table 1 lists the estimation accuracy of the SVM models for the

binary classification, and Table 2 lists those of DNN models. We

used the following four feature sets to investigate the contribution

of physiological signals to estimate the participants’ sentiments: P,

physiological features; A+P, acoustic + physiological features; P+V,

physiological + visual features; A+P+V, fusion of all the features.

To analyze the contribution of EDA and HR features, physiological

features (PEH) were divided into EDA subset (PE) and HR subset

(PH), and the estimation accuracy of the models using each feature

set was evaluated (rows 4 to 6 and columns 2 to 8 in Table 1 and 2).

In addition, acoustic features (A), visual features (V), and acoustic +

visual features (A+V) set (columns 9 to 12 in Table 1 and 2) were

used for comparison with physiological models.

The EF or LF technique was used to fuse the different modalities,

as described in Section 5.1. To investigate the extent to which the hu-

man annotators could estimate the participant’s positive/negative

sentiment labels, the estimation accuracy of the participant’s senti-

ment based on the external sentiment annotation was also evalu-

ated.

Performance of the SVM models: Table 1 lists the estimation

accuracy of the SVM models. The unimodal models estimation ac-

curacy are shown in columns 2 (physiological model), 9 (acoustic

model) and 10 (visual model) in Table 1. The best unimodal model

is the physiological EDA subset (PE) model (row 5 and column 2

in Table 1) with the accuracy of 61.6%. Comparing the unimodal

PE models to the mutimodal models (columns 3 to 8, 11, and 12 in
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Table 1: Binary classification accuracy based on the SVM. The bold value indicates the highest estimation accuracy. The ma-

jority baseline was 54.7%. (Uni: unimodal features, Multi: multimodal features, A: acoustic features, P: physiological features,

and V: visual features)

Physiological

feature set

Uni Multi Uni Multi
Human

modelP
A+P P+V A+P+V

A V
A+V

EF LF EF LF EF LF EF LF

EDA+HR (PEH) 57.7 57.0 60.3 57.5 58.7 56.8 60.2

57.7 58.2 57.1 58.9 63.0EDA (PE) 61.6 60.4 61.4 60.7 61.2 58.4 61.2

HR (PH) 52.5 57.0 55.0 56.7 54.9 56.9 57.1

Table 2: Binary classification accuracy based on the DNN. The bold value indicates the highest estimation accuracy. The ma-

jority baseline was 54.7%. (Uni: unimodal features, Multi: multimodal features, A: acoustic features, P: physiological features,

and V: visual features)

Physiological

feature set

Uni Multi Uni Multi
Human

modelP
A+P P+V A+P+V

A V
A+V

EF LF EF LF EF LF EF LF

EDA+HR (PEH) 60.1 58.9 58.7 60.5 60.0 59.7 60.1

57.3 57.7 58.4 58.1 63.0EDA (PE) 62.2 60.2 59.4 63.2 62.9 60.8 61.0

HR (PH) 48.6 56.1 55.4 53.7 54.3 55.7 56.9

Table 1), there is no improvement of estimation accuracy.

Performance of the DNNmodels: Table 2 presents the accuracy

of the binary classification of the DNN models. The unimodal mod-

els estimation accuracy are shown in columns 2, 9 and 10 in Table

2 in the same way as Table 1. The best unimodal model is the EDA

subset (PE) model (row 5 and column 2 in Table 2) with the accuracy

of 62.2%, which exhibited an improvement of 0.6% compared to the

highest SVM models. Comparing the unimodal EDA subset (PE)

models to the mutimodal models (columns 3 to 8, 11 and 12 in Table

2), there is further improvement was observed in the EF of the EDA

+ visual (PE+V) model with the estimation accuracy was 63.2% (row

5 and column 5), which meant that this model outperformed the

highest performing SVM models by 1.6%.

Accuracy of estimating the participant’s sentiment labels by

the annotators: Next, we compared the performance of our ma-

chine learning models to the “human” model as a benchmark. To

this end, the average external sentiment score annotated by five

human coders was divided into high and low classes by considering

a threshold of 4. We calculated the accuracy of the binary classifica-

tion of the participant’s sentiments based on the external sentiment

annotation. The estimation accuracy through human estimation

was 63.0% which is higher than that for the highest performing

SVMmodel (PE model, 61.6%, Table 1). The result (63.2%) of the best

DNNmodel (PE+V) was equivalent to that of the human annotators.

In the next section, we discuss these results in depth.

7 DISCUSSION

As shown in Section 6, the proposedmultimodal DNNmodel achieved

an estimation accuracy equivalent to the human performance in

the positive/negative sentiment estimation. We further investigated

whether the (mis-)classification trend was similar or different be-

tween the human model which depends on the explicit information

Estimated
high

Estimated
low

Actual
high 38% 7%

Actual
low 31% 24%

Actual
high 28% 19%

Actual
low 18% 35%

Human
model

DNN
model

Figure 3: Confusionmatrix for binary classification showing

the percentage of the total samples (𝑛 = 2468). upper: human

model, lower: DNN model.

and DNN model which based on implicit biological responses. First,

we presented the confusion matrices for the classification results of

all the 2468 exchange samples with the “human” model and phys-

iological (PE) DNN model and compared the results. Second, the

classification result of each 26 individuals was considered, and we

discussed the differences in the human and machine classification

results. Finally, to investigate the physiological features related to

the specific outcomes, we performed feature analysis and clarified

the physiological factors related to the estimation performance.

7.1 Comparison of Human and Machine

First, to observe the overall classification trend, we evaluated the

confusionmatrix for the human and physiological (PE) DNNmodels

(Figure 3). The results showed that there were certain false positives

(i.e., misclassified true low into high class) existed in the human

estimation (31% of the total sample); however, many positive senti-

ment labels (true high) were classified as a high class in the human
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Figure 4: Estimation results for each participant in the LOPOCV (green bar: Human model, yellow bar: DNN model). As a

reference, the proportion of the two classes for each participant’s sentiment (grand truth) is also shown (blue bar: positive

sentiment (true high), red bar: negative sentiment (true low)).

Table 3: Average correlation coefficient 𝑟 between the EDA

feature and sentiment score for all the participants. Bold in-

dicates 𝑟 > 0.1.

Description 𝑟

Standard deviation 0.157

Skewness 0.007

Range 0.161

Slope of linear approximation 0.075

GSR number 0.168

model (38%). In contrast, the DNN model correctly classified many

negative sentiment labels (true low) into the low class (35%). This

result suggests that the humans could distinguish the participant’s

positive sentiment labels during the dialogue. To confirm the differ-

ences between the human and machine estimation, we evaluated

the classification results for each participant. As shown in Figure

4, the humans tended to be more accurate when the participants

had a positive sentiment; however, the estimation accuracy was

degraded when the participants exhibited a negative sentiment

during the dialogue. In contrast, the DNN model classified many

negative sentiment labels correctly into the low class, which human

models often misclassified. These results suggest that the classi-

fication pattern of the human and DNN models is different, even

though the total estimation accuracy is comparable. When humans

perceive emotions in other people, their perception depends on

the explicit acoustic and visual information of the other people,

and they cannot detect the physiological implicit state. Thus, it is

challenging to estimate the negative or neutral implicit responses

of the interactions of the humans. Alternatively, the use of physio-

logical signals or their fusion with other signals could help detect

the implicit aspects and estimate the negative sentiment labels for

the adaptation of the dialogue systems.

7.2 EDA Feature Analysis

Among the modalities used in this study, the DNN model exhibited

that the physiological features are more effective in estimating

the participant’s sentiments, which change dynamically during

dialogues. As the EDA has more effective features compared to

those of the HR among the physiological features, we focused on

the EDA features and performed an additional analysis. First, to

investigate the EDA features that are effective in estimating the

participant’s sentiment labels, we performedWelch’s t-test to verify

whether there is a difference between the means of feature of the

samples that are classified into high class and the means of those

with low class. The results indicated that the standard deviation,

skewness, range, and slope of linear approximation of the EDA

signals and the GSR number were significantly different for the high

and low classes (𝑝 < 10−7). Subsequently, a correlation analysis was

performed between each of the five features and the participant’s

sentiment score. The average correlation coefficient 𝑟 between

the EDA feature and sentiment score for all the participants was

calculated, and it was observed that the GSR number exhibit the

highest correlation (Table 3, 𝑟 = 0.168).
Figure 5 presents an example of the time series changes in the

sentiment score and the GSR number during the dialogue. It can be

noted that the sentiment score is not static but dynamic, and these

changes co-occur with the changes in the GSR in this example. This

result is reasonable as it is widely recognized that the GSR is related

to the human emotional state in the affective computing and psy-

chophysiological domain [13, 22, 27]. This co-occurrence property

of the GSR can be applied to estimate the participants’ sentiment

labels in the DNN model, which exhibits the same performance as

that of the human model.

To visualize the relationships between the sentiment score and

GSR number, we calculated the quartile of the GSR number, and the

samples of the participants’ sentiment scores were divided into the

quartile group of the GSR number. Figure 6 (upper panel) shows

the relative frequency of the sentiment score in each group (Q1:

lower quartile, Q4: upper quartile) and indicates the differences in
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Figure 5: Example of dynamic changes in the participant’s sentiment and GSR number during the dialogue. The sentiment

score (blue line, left y axis) and GSR per exchange (orange line, right y axis) are shown. The red stars indicate the timing of

the system utterance (Participant ID 11 in Figure 4, dialogue data from the start time to 15th exchange).

Figure 6: Relationship between the sentiment score of the

participant and EDA features in each exchange. The samples

of the participants’ sentiment score were divided into quar-

tile groups based on the quantile of the GSR number (upper

panel) or SC range (lower panel). The relative frequency of

the sentiment score in each quartile group is shown.

the sample distribution along with the GSR number. There was a

clear difference between quartile groups in the sentiment score of

6. A similar distribution was observed in the quartile group of the

SC range (Figure 6, lower panel). Thus, these EDA features were

expected to contribute to the sentiment estimation.

7.3 Limitation and Remaining Works

Although the detection of the implicit responses can help develop

natural and engaging dialogue systems, it needs real-time feedback

to the systems. Therefore, the subsequent objective is to optimize

when and how to adapt the systems and to realize automated di-

alogue adaptation to provide a novel user experience. Weber et

al. [36] proposed an autonomous real time adaptation approach

that was based on social signals and reinforcement learning in

human–robot interaction. A similar feedback approach that can

detect the dynamic implicit responses in real time can help realize

a more natural and interesting interaction between the user–agent

or user–robot. Alternatively, the interbeat interval derived through

photoplethysmography is often analyzed in the affective computing

or psychophysiological domain. This aspect was not implemented

in this work; however, this analysis can provide useful insights

regarding autonomic nervous systems. In addition, the presence

of individual differences in physiological signals could lead to a

performance degradation. A method known as covariate shift adap-

tation [32], which is based on the density ratio estimation can be

used for the domain adaptation in the machine learning domain.

Using these methods, the individual differences in physiological

signals can be compensated, and the model performance can likely

be improved. These aspects will be considered in future work.

8 CONCLUSION

In this study, we collected a new multimodal dialogue corpus

Hazumi1911, which included physiological and acoustic/visual

signals to investigate the effectiveness of physiological signals in

estimating the participant’s sentiment at the exchange level. We

demonstrated that the SVM model based on physiological signals

outperforms the majority baseline and achieves an estimation ac-

curacy of 60.3% when fused with acoustic features. Furthermore,

a multimodal DNN model based on the EDA and visual features

exhibits an accuracy of 63.2%, which is comparable to the accuracy

of sentiment estimation (63.0%) conducted by humans. Although

the human and DNN models have similar estimation accuracies,

the classification patterns are different. According to the results

of the feature analysis, the EDA is correlated with the sentiment

score at the exchange level during the dialogue, and thus, detect-

ing these dynamic implicit responses can help in the adaptation of

multimodal dialogue systems.
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